

Tyler Meek – Structural Option AE Senior Thesis 2011 33 Harry Agganis Way, Boston Ma.

Introduction Thesis Goals Conclusion

Presentation Outline

- Existing Structure
- Structural Depth
- (MAE Course Related Study)
- Architectural Breadth
- Construction Management Breadth
- Questions & Comments

Presentation Outline Introduction Existing Structure Thesis Goals Structural Depth (MAE Course Related Study) Architectural Breadth Construction Management Breadth Conclusion Questions & Comments

33 Harry Agganis Way"Res Tower II"Dormitory on BU Campus, JH Student VillageBetween Charles River & Commonwealth Ave

Introduction

Courtesy of Bing Maps

500 feet 10

Pictometry Bird's Eye © 2010 MDA Geospatial Services In Pictometry Bird's Eye © 2010 Pictometry International Co

26 Story Dormitory
396,000 sq. ft.
296 ft tall (208 ft shorter section)
Floor plan steps back at floor 19
Main lobby on first floor
Meeting area/observatory on 26th floor

Building Statistics

Meeting area/observatory on 26th floor

Project Team

Owner: CM: Arch/MEP: Structural: Boston University Walsh Brothers Cannon Design Weidlinger Associates

Mat foundation with two thicknesses 4'-3" supporting taller section 3'-9" supporting shorter section Typical reinforcement: E-W, #10 @ 10" O.C N-S, #9 @ 10" O.C

Braced frames anch resistance to uplift.

Existing Foundation

Braced frames anchored to foundation with additional reinforcing cages to increase

Mat foundation with two thicknesses 4'-3" supporting taller section 3'-9" supporting shorter section Typical reinforcement: E-W, #10 @ 10" O.C N-S, #9 @ 10" O.C

Braced frames anch resistance to uplift.

9" trench along center of each tower Filled with 4000 psi and reinforced with welded wire fabric after erection of interior columns Attempt to increase strength column-to-foundation connection

Existing Foundation

Braced frames anchored to foundation with additional reinforcing cages to increase

Existing Floor Construction

3" 18 gage galvanized steel deck 3 ¹/₄" lightweight concrete topping 6x6 welded wire fabric reinforcement

Existing Lateral System

Moment connected concentrically braced frames

Moment connections to increase stiffness while avoiding interruption of main corridor

Red and blue lines represent braced frames running in perpendicular directions

Presentation Outline Introduction Existing Structure Thesis Goals Structural Depth (MAE Course Related Study) Architectural Breadth **Construction Management Breadth** Conclusion Questions & Comments

22 FB FB FB FB FB FB FB FB

Structural Depth

- Design for gravity loads Gravity and 100% lateral loads Gravity and partial lateral loads
- Investigate the most effective use of a Staggered Truss System:
- Design new lateral system

Architectural Study

rendered images

Thesis Goals

Document impact of trusses on interior architectural dynamic using

Construction Management Study

Create site logistics plan for steel erection phase of project Estimate a schedule using new design scheme

MAE Course Related Study

Design two typical connections in truss

- Truss to column design (bolted)
- Web members to chord members (welded)

Introduction Existing Structure Thesis Goals

• Structural Depth (MAE Course Related Study) Architectural Breadth **Construction Management Breadth** Conclusion Questions & Comments

AISC Design Guide 14: Staggered Truss Framing Systems provided excellent guidance

Background

Story deep Vierendeel truss to replace need for interior columns W10 chord members HSS web members Gusset plate connections 10 ft floor-to-floor = 9'-6" truss with 6" slab

Structural Depth

Typical Elevation of Truss

Details of Truss system

Original Truss Locations

Truss Locations

Location Issues

Architectural Plans

Architectural Issue

Trusses that require coordination

Design Loads

Live Loads		
	Design Load (psf) Thesis Load (psf)	
Occupancy Type	Mass. State Building Code	IBC 2009 & ASCE7-10
Public Area	100	100
Corridor	80	100
Dwelling Unit	40	40
Loading Dock	250	250
Mechanical		
Penthouse	150	125
Roof	30	20
Table 1: Live Loads for Res Tower II		

Dead Loads		
Material	Load (psf)	
Slab		
-Roof Deck	5	6
-Floor Deck	4	6
Façade	1	8
Superimposed	3	0
Table 2: Dead loads for Res Tower II		

$\delta < \ell/240 = 2.96$ "

Member Sizes

Chord Members – W10 x 33 Web Members – HSS 10 x 5 x 5/16

Secondary Elements

14K4 joists span between trusses 3" 18 gage decking with 3 ¼" LW topping

Gravity System Design

Original RISA Model

$$\delta = 2.41$$
"

Design Loads

Live Loads		
	Design Load (psf) Thesis Load (psf)	
Occupancy Type	Mass. State Building Code	IBC 2009 & ASCE7-10
Public Area	100	100
Corridor	80	100
Dwelling Unit	40	40
Loading Dock	250	250
Mechanical		
Penthouse	150	125
Roof	30	20
Table 1: Live Loads for Res Tower II		

Dead Loads		
Material	Load (psf)	
Slab		
-Roof Deck		56
-Floor Deck		46
Façade		18
Superimposed		30
Table 2: Dead loads for Res Tower II		

MAE Course Related Study

Web Members to Bottom Chord Member

Design Loads

Live Loads		
	Design Load (psf) Thesis Load (psf)	
Occupancy Type	Mass. State Building Code	IBC 2009 & ASCE7-10
Public Area	100	100
Corridor	80	100
Dwelling Unit	40	40
Loading Dock	250	250
Mechanical		
Penthouse	150	125
Roof	30	20
Table 1: Live Loads for Res Tower II		

Dead Loads		
Material	Load (psf)	
Slab		
-Roof Deck	56	
-Floor Deck	46	
Façade	18	
Superimposed	30	
Table 2: Dead loads for Res Tower II		

East West	
Floor	Force (k)
1	53.26
2	106.87
3	90.06
4	74.18
5	76.54
6	78.50
7	80.27
8	82.01
9	83.48
10	84.57
11	85.59
12	86.70
13	87.82
14	88.88
15	89.73
16	90.42
17	91.22
18	92.09
19	92.84
20	70.88
21	49.29
22	56.08
23	62.33
24	62.67
25	75.63
26	95.06

Gravity & Lateral System Investigation

Preliminary Models

Single bay modeled to find weak points

Multiple bays investigated for interaction and stresses

As can be seen from image, the chord members stressed beyond capacity

Full Building Model and Results

resist lateral loads

stiffness and deflections

- For Res Tower II, the staggered truss system is not an efficient system to
- Exponential relationship between

n	vs.	Men	ıber	Size	
					_

North Sou		
Floor	Ecroe (k)	
1	24.22	
2	48.61	
3	40.01	
	33 74	
5	34.81	
6	35.70	
7	36.51	
8	37.30	
9	37.97	
10	38.47	
11	38.93	
12	39.44	
13	39.94	
14	40.43	
15	40.81	
16	41.13	
17	41.49	
18	41.89	
19	42.23	
20	42.53	
21	45.91	
22	43.72	
23	38.41	
24	38.61	
25	46.58	
26	58.54	
27	58.90	
ROOF	27.76	
BASE	1135.55	

East West (Y-Direction,		
Etabs)		
Floor	Force (k)	
1	53.26	
2	106.87	
3	90.06	
4	74.18	
5	76.54	
6	78.50	
7	80.27	
8	82.01	
9	83.48	
10	84.57	
11	85.59	
12	86.70	
13	87.82	
14	88.88	
15	89.73	
16	90.42	
17	91.22	
18	92.09	
19	92.84	
20	70.88	
21	49.29	
22	56.08	
23	62.33	
24	62.67	
25	75.63	
26	95.06	
27	95.65	
ROOF	45.09	
BASE	2227.72	

H/400 = 8.76" at 26th floor = 5.94" at 19th floor

Designed using Load Case D + 0.5L + 0.7W (ASCE7-05 CC1.2) -Appendix Slide $S_{DS} =$ $S_{D1} =$ R = I = T =

Story Drift Limit (ASCE Table 12.2-1) $\Delta_a = 1.80$ " for 10 ft Floor-to-Floor 2.88" for 16 ft Floot-to-Floor

New Lateral Loads

Seismic Design Criteria		
0.40615	T _{model-x} =	2.1424 s
0.2263	Tmodel-y =	1.7839 s
3.25	C _u =	1.474
1.25	$T_a =$	0.701
1.033 s	$C_s =$	0.1367

Seismic		
Floor	Force (k)	
1	3	
2	6	
3	12	
4	16	
5	22	
6	29	
7	36	
8	43	
9	51	
10	59	
11	67	
12	76	
13	84	
14	93	
15	102	
16	121	
17	131	
18	140	
19	150	
20	160	
21	85	
22	91	
23	96	
24	101	
25	106	
26	114	
27	125	
ROOF	133	
BASE	2350	

<u>Floor Plan</u>

Shear Wall Locations Highlighted

Most Efficient Lateral Design

<u>Process</u>

- Three main iterations were completed to find the most efficient lateral system:
- 1. 24" shear walls were added around the vertical circulation spaces at the central core and north and south stairwells

<u>Floor Plan</u>

Three lateral 1. 24⁷ spaces 2. Mo

Shear Wall and Moment Frame Locations Highlighted

Most Efficient Design

<u>Process</u>

- Three main iterations were completed to find the most efficient lateral system:
- 1. 24" shear walls were added around the vertical circulation spaces at the central core and north and south stairwells
- 2. Moment frames were added through the entire height of the building and shear walls decreased to 16"

<u>Plan</u>

Coupling Beam Locations Highlighted

Most Efficient Design

Process

- Three main iterations were completed to find the most efficient lateral system:
- 1. 24" shear walls were added around the vertical circulation spaces at the central core and north and south stairwells
- 2. Moment frames were added through the entire height of the building and shear walls decreased to 16"
- 3. Moment frames were removed from the system as well as the north and south shear wall

Model A: 16" shear walls with coupling beams and staggered truss system

W10x33 Continuous Top and Bottom Chord Members HSS10x5x5/56 Diagonal and Vertical Web Members Columns ranging in size from W12x279 to W12x79 with splices at every 4th floor

14K4 Joists span from Truss to Truss 3" 18 gage decking with 3 ¹/₄" LW topping spans from Joist to Joist

Staggered Truss System Summary

<u>Gravity</u>

<u>Lateral</u>

16" Shear Walls with 16"x24" Coupling Beams located at Central Core (Vertical Circulation Area) Stiffness from Staggered Truss System

Drift values in appendix slide

Presentation Outline Introduction Existing Structure Thesis Goals Structural Depth (MAE Course Related Study) Architectural Breadth **Construction Management Breadth** Conclusion Questions & Comments

Areas of Concern

Meeting area/observatory on 26th floor Main Lobby Large study area on 2nd floor

Architectural Breadth

<u>26th floor Meeting Area/Observatory</u>

Existing Conditions

With Truss

26th floor Meeting Area/Observatory

<u>View 1</u>

Main lobby on First Floor

Large Study on 2nd Floor

Existing Conditions

With Truss

Presentation Outline Introduction Existing Structure Thesis Goals Structural Depth (MAE Course Related Study) Architectural Breadth **Construction Management Breadth** • Conclusion Questions & Comments 20 20 20 20 20 20 20 20 20

Site Logistics

Schematic plan of site before construction to evaluate surrounding environment Delivery routes and onsite storage locations determined Crane selection

Construction Management Breadth

Site Logistics Plan

Presentation Outline Introduction Existing Structure Thesis Goals Structural Depth (MAE Course Related Study) Architectural Breadth **Construction Management Breadth** • Conclusion Questions & Comments NO NO NO NO NO NO NO NO NO

6H 8H

Site Logistics

Schematic plan of site before construction to evaluate surrounding environment Delivery routes and onsite storage locations determined Crane selection

Construction Schedule

Five stages

- 1. Shear walls
- 3. Joists
- 4. Decking
- 5. Slab

Construction Management Breadth

	ctober 21		January 1	
	10/16	11/20	12/25	1/29
	,			
		*		
		ł		
	ſ		_	
	1			
		-	_ 1	
			-	
ц <u>н</u>		ч <u> </u>		
		<u>ч</u>		

Existing parking area

Symbol Key

Site Logistics Plan

Existing Conditions with fence

During Construction

Existing parking area

Symbol Key

Site Logistics Plan

Site Plan

During Construction

Presentation Outline Introduction **Existing Structure** Thesis Goals Structural Depth (MAE Course Related Study) Architectural Breadth **Construction Management Breadth** Conclusion Questions & Comments

Staggered Truss System

Architectural

required (columns, bearing walls)

Construction Management

A staggered truss system requires lead time to allow for prefabrication of trusses Due to the scale of trusses a detailed site logistics plan and construction schedule must be maintained to avoid delayed construction

Conclusions

Staggered truss system successfully designed and efficiently implemented for Res Tower II.

Not a practical way to resist lateral loads for this particular structure.

Coupled shear walls added to central vertical circulation space to increase stiffness

Impact on Other Disciplines

This system allows for very open floor plans because no interior load carrying elements are

A good deal of coordination is required between the architect and structural designer to take full advantage of this system's qualities (proven in architectural breath study)

Mechanical/Electical

The staggered truss system offers an increased plenum space because the structure does not need to be as deep as typical composite steel framing

Because gaps and openings exist within the structure itself, on site adjustments and inter-disciplinary coordination can allow ductwork or wring to be done through these openings

Lighting

The staggered truss system allows for an increase in daylighting capabilities by pulling the structure away from the exterior of the building Without the need for interior walls daylight is allowed to penetrate deeper into the space. Exposing the trusses in public spaces would provide an opportunity for creative lighting schemes or for the creation of a display space

Impact on Other Disciplines

Cannon Design

John Isbell Scott Rabold Bassem Almuti

CANNONDESIGN

Thank you for allowing me to make my own decisions and mistakes along the way. Even you may not have understood exactly what I have been working on, you have given more than you know.

Thank you for putting up with me over the years. I cannot believe how lucky I was to find such a great group of people to spend almost every hour of my time with.

Thanks to all of those of you WHO helped me enjoy my last year of school.

I have been blessed in many aspects of my life and am very thankful for it. I hope I can use my talents for His glory.

Acknowledgements

<u>Family</u>

Friends

God

<u>Faculty</u>

Dr. Boothby Dr. Hanagan Dr. Geschwindner Prof. Bob Holland Ryan Solnosky

Presentation Outline Introduction Existing Structure Thesis Goals Structural Depth H (MAE Course Related Study) Architectural Breadth **Construction Management Breadth** Conclusion == 7 Questions & Comments

Questions and Comments

<u>ASCE 7-05 CC. 1.2</u>

CC.1.2 Drift of Walls and Frames. Drifts (lateral deflections) of concern in serviceability checking arise primarily from the effects of wind. Drift limits in common usage for building design are on the order of 1/600 to 1/400 of the building or story height [Ref. CC-7]. These limits generally are sufficient to minimize damage to cladding and nonstructural walls and partitions. Smaller drift limits may be appropriate if the cladding is brittle. An absolute limit on interstory drift may also need to be imposed in light of evidence that damage to non-structural partitions, cladding and glazing may occur if the interstory drift exceeds about 10 mm (3/8 in.) unless special detailing practices are made to tolerate movement [Refs. CC-6, CC-8]. Many components can accept deformations that are significantly larger.

Use of the factored wind load in checking serviceability is excessively conservative. The load combination with an annual probability of 0.05 of being exceeded, which can be used for checking short-term effects, is

D + 0.5L + 0.7W

(CC-3)

obtained using a procedure similar to that used to derive Eqs. CC-1a and CC-1b. Wind load, W, is defined in Chapter 6. Due to its transient nature, wind load need not be considered in analyzing the effects of creep or other long-term actions.

Deformation limits should apply to the structural assembly as a whole. The stiffening effect of nonstructural walls and partitions may be taken into account in the analysis of drift if substantiating information regarding their effect is available. Where load cycling occurs, consideration should be given to the possibility that increases in residual deformations may lead to incremental structural collapse.

	SSECT A
T SECONT	

Seismic X						
Story	UX (in)	Interstory Drift (in				
26	7.2889	0.3945				
25	6.8944	0.393				
24	6.5014	0.393				
23	6.1084	0.3925				
22	5.7159	0.3915				
21	5.3244	0.3896				
20	4.9348	0.3868				
19	4.548	0.3188				
18	4.2292	0.3167				
17	3.9125	0.3131				
16	3.5994	0.3086				
15	3.2908	0.303				
14	2.9878	0.2963				
13	2.6915	0.2885				
12	2.403	0.2794				
11	2.1236	0.2689				
10	1.8547	0.2571				
9	1.5976	0.2437				
8	1.3539	0.2288				
7	1.1251	0.2124				
6	0.9127	0.1943				
5	0.7184	0.1746				
4	0.5438	0.1531				
3	0.3907	0.196				
2	0.1947	0.1296				
1	0.0651	0.0651				

Model A: 16" shear walls with coupling beams and staggered truss system

Lateral Deflections

Seismic Y								
Story	UY (in)	Interstory Drift (in)						
26	16.5868	0.6187						
25	15.9681	0.6305						
24	15.3376	0.6453						
23	14.6923	0.6623						
22	14.03	0.6805						
21	13.3495	0.6983						
20	12.6512	0.7152						
19	11.936	0.6069						
18	11.3291	0.6205						
17	10.7086	0.6346						
16	10.074	0.648						
15	9.426	0.6596						
14	8.7664	0.6692						
13	8.0972	0.6755						
12	7.4217	0.6789						
11	6.7428	0.6788						
10	6.064	0.6751						
9	5.3889	0.6674						
8	4.7215	0.6554						
7	4.0661	0.6389						
6	3.4272	0.617						
5	2.8102	0.5894						
4	2.2208	0.5555						
3	1.6653	0.7995						
2	0.8658	0.5974						
1	0.2684	0.2684						

Story Drift Limit (ASCE Table 12.2-1) $\Delta_a = 1.80$ " for 10 ft Floor-to-Floor 2.88" for 16 ft Floot-to-Floor

R = 3.25 for Concentrically Braced
Frames
R = 5 for Reinforced Concrete Shear
Walls

Wind Y							
Story	UY (in)	H/400 (in)					
26	8.1914	8.76					
25	7.9036	8.4					
24	7.6097	8.04					
23	7.3081	7.68					
22	6.998	7.32					
21	6.6793	6.96					
20	6.3524	6.6					
19	6.0179	6.24					
18	5.7343	5.94					
17	5.4449	5.64					
16	5.1488	5.34					
15	4.8458	5.04					
14	4.536	4.74					
13	4.2198	4.44					
12	3.8978	4.14					
11	3.5709	3.84					
10	3.24	3.54					
9	2.9065	3.24					
8	2.5718	2.94					
7	2.2377	2.64					
6	1.9064	2.34					
5	1.5804	2.04					
4	1.263	1.74					
3	0.9579	1.44					
2	0.5077	0.96					
1	0.1613	0.48					

Construction Schedule

Five stages

- 1. Shear walls
- 2. Steel framing (trusses and columns)
- 3. Joists
- Decking
 Slab

Task Name
Shear Walls
Pour floors 1-4 and cure
Pour floors 5-8 and cure
L9-12
L13-16
L17-20
L21-24
L24-26
Truss and Columns
L1-4
L5-8
L9-12
L13-16
L17-20
L21-24
L25-26
Joists
L1-7
L8-14
L15-21
L22-26
Decking
Slab

Duration	Start	Finish	2/13	March 21	4/24	June 1	7/3	August 11	9/11	0ctober 2	1 11/20	January 1	1/29
200 days	Fri 4/1/11	Thu 1/5/12	4/13	3/20	9/24	3/23	113	0//	3/11	1 10/10	1 11/20	1 12/23	1/23
29 days	Fri 4/1/11	Wed 5/11/11											
29 days	Thu 5/12/11	Tue 6/21/11											
29 days	Wed 6/22/11	Mon 8/1/11				*							
29 days	Tue 8/2/11	Fri 9/9/11					2	 1					
29 days	Mon 9/12/11	Thu 10/20/11						1		_			
29 days	Fri 10/21/11	Wed 11/30/11								×			
29 days	Thu 12/1/11	Tue 1/10/12			\perp						¥		
175 days	Thu 5/12/11	Wed 1/11/12			<u> </u>								
4 days	Wed 5/11/11	Mon 5/16/11											
4 days	Mon 6/20/11	Thu 6/23/11				5							
4 days	Thu 7/28/11	Tue 8/2/11					` _						
4 days	Tue 9/6/11	Fri 9/9/11						- -		L			
3 days	Fri 10/14/11	Tue 10/18/11								ъ	<u> </u>		
2 days	Wed 11/23/11	Thu 11/24/11											
2 days	Tue 1/3/12	Wed 1/4/12										T .	
35 days	Wed 11/23/11	Tue 1/10/12									*		
10 days	Wed 11/23/11	Tue 12/6/11											
10 days	Wed 12/7/11	Tue 12/20/11										ካ	
10 days	Wed 12/21/11	Tue 1/3/12										<u> </u>	
5 days	Wed 1/4/12	Tue 1/10/12										—	
62 days	Wed 11/30/11	Thu 2/23/12									ч —		
65 days	Mon 12/5/11	Fri 3/2/12											